Sampling Signals of Finite Rate of Innovation*

Martin Vetterli
 lcavwww.epfl.ch/~vetterli
 EPFL & UCB

*Joint work with T. Blu, I. Maravic, P. Marziliano, A. Ridolfi (EPFL) and J. Kusuma (UCB/MIT)
Outline

1. Motivation

2. Signals of Finite Rate of Innovation

3. The Periodic Case
 - Diracs, non-uniform splines and piecewise polynomials

4. Finite Length Signal Case
 - gaussian and sinc kernels

5. Applications

6. Multidimensional case
 - 2D Diracs
 - Radon transform

7. Wideband communications
 - CDMA and UWB
 - channel estimation

8. Conclusions
1 Motivation

Signal Processors love bandlimited Signals...

Then:

\[\{f(nT)\}, n \in \mathbb{Z}, T = \frac{\pi}{\omega_m} \]

is a sufficient representation, since

\[f(t) = \sum_{n \in \mathbb{Z}} f(nT) \sin c\left(\frac{t}{T} - n\right) \quad (1) \]

where

\[\sin c(t) = \frac{\sin(\pi t)}{\pi t} \quad \mathcal{F} \quad I[-\pi, \pi] \]
But what if

just one discontinuity and no more sampling theorem...

Often, one does not have access to the signal itself, but to a measurement

Example: neural spikes measured in non invasive manner ;)

\[f(t) \]

\[F(\omega) \]
Example: photographing stars

Can we sample such signals that we see through an imperfect measuring device?

There are many parametric signals which are far from bandlimited

Example: CDMA

Note: rate of transition is finite, given by the chip rate symbol rate much slower
Example: Woodcut pictures
2 Signals of Finite Rate of Innovation

What is so special about a signal \(f(t) \) bandlimited to \([-\omega_m, \omega_m]\)?

With a sampling interval of \(T = \pi/\omega_m \) the signal \(f(t) \) is specified by

\[
\rho = 1/T = \omega_m/\pi
\]

degrees of freedom per unit of time. By the interpolation formula (1), any bandlimited signal can be generated as

\[
\sum_{n \in \mathbb{Z}} f(nT) \delta(t - nT) \ast \text{sinc}(t/T) = f(t) = (1)
\]
Signals of finite \(\rho \) (2)

Definition: The number of degrees of freedom per unit of time is called the rate of innovation \(\rho \).

Rate of innovation

- Assume a class of signals having a parametric representation
- Consider one signal \(x \) from the class
- Call \(C_x(t_0, t_1) \) the number of degrees of freedom in

- Then

\[
\rho = \lim_{\tau \to \infty} \frac{1}{\tau} C_x\left(\frac{-\tau}{2}, \frac{\tau}{2}\right)
\]

- If \(\rho < \infty \), we call \(x \) a signal of **finite rate of innovation**
Example: Poisson process

Interarrival times: i.i.d. , pdf $\mu e^{-\mu t}$

Expected interarrival time: $1/\mu$

$\{t_i\}$ is a sufficient description of a realization

$$\rho = \frac{1}{E(\text{int. time})} = \mu$$
Aquisition Model, Notation

\[y_n = y(nT) = \langle h(t - nT), x(t) \rangle \]

where
- \(x(t) \): signal
- \(h(t) \): sampling kernel
- \(y(t) \): filtered version of \(x(t) \)
- \(y_n \): samples
Natural questions

1. What are interesting classes of signals with finite ρ

2. For which of these classes can we find unique representations through sampling (in particular uniformly) that is:

$$y_n = \langle h(t - nT), x(t) \rangle$$

such that $x \Leftrightarrow y_n$

just like in the bandlimited case

3. What are good kernels $h(t)$?

4. What are the algorithms to find $x(t)$ from y_n?
1. "Classic", subspace case. Given known fct $\varphi(t)$:

$$\chi(t) = \sum_{n \in \mathbb{Z}} c_n \varphi\left(\frac{t}{T} - n\right)$$

Space: $\text{Span} \left\{ \varphi\left(\frac{t}{T} - n\right) \right\}$

This is a well studied case (sampling, non-uniform sampling, reconstruction). It is a linear problem.

Example: Bandlimited signals $[-w_m, w_m]$, $\varphi(t) = \text{sinc}(t)$

Basis:

Ex:

Example: Uniform, B-splines,

Basis:

Ex:
2. Arbitrary shifts, known \(\varphi(t) : x(t) = \sum_{n \in \mathbb{Z}} c_n \varphi \left(\frac{t}{T} - \tau_n \right) \)

This is not a subspace!

Example: Non-uniform splines

\[
x(t)
\]

periodic non-uniform spline (deg. 1)
3. **Arbitrary shifts, set of known fcts \(\varphi_r(t) \):**

\[
x(t) = \sum_{n \in \mathbb{Z}} \sum_{r=0}^{R} c_{nr} \varphi\left(\frac{t - \tau_n}{T}\right)
\]

Example: Non-uniform piecewise polynomials
The 4 cases of interest:

1. Periodic signal, infinite kernel

2. Finite signal, infinite kernel

3. Infinite signal, finite kernel

4. Infinite signal, infinite kernel

Note: 1, 2 and 3 lead to finite dimensional problems
3 The periodic case

Fourier series

\[x(t) = \sum_{m \in \mathbb{Z}} X[m] e^{\frac{j2\pi mt}{\tau}} \]

Sampling FRI- 16
3. A Periodic “stream” of Diracs

K Diracs per τ:

2*K degrees of freedom $\rho = \frac{2K}{\tau}$

$$x(t) = \sum_{n \in \mathbb{Z}} c_n \delta(t - t_n) = \sum_{n \in \mathbb{Z}} \sum_{k=0}^{K-1} c_k \delta(t - t_k - n\tau) = \sum_{k=0}^{K-1} c_k \frac{1}{\tau} \sum_{m \in \mathbb{Z}} e^{\frac{j2\pi m(t - t_k)}{\tau}}$$

or $X[m] = \frac{1}{\tau} \sum_{k=0}^{K-1} c_k e^{\frac{-j2\pi mt_k}{\tau}} \quad m \in \mathbb{Z}$

⚠️ *X[m] is a weighted sum of K exponentials* $\left(e^{\frac{-j2\pi t_k}{\tau}} \right)^m$
Consider:

\[A(z) = \sum_{m=0}^{K} A[m] z^{-m} = \prod_{k=0}^{K-1} \left(1 - e^{-\frac{j2\pi t_k}{\tau}} \cdot z^{-1}\right) \]

Now, note that

\[
\left[1, -e^{-\frac{j2\pi t_k}{\tau}}\right] \ast \left[\ldots, e^{-\frac{j2\pi t_k}{\tau}}, 1, -e^{-\frac{j2\pi t_k}{\tau}}, e^{-\frac{j4\pi t_k}{\tau}}, \ldots\right]
\]

is zero, from which follows that \(A[m] \ast X[m] = 0 \)

Equivalently, in time domain

\[
a(t) = A(z) \bigg|_{z = e^{-\frac{j2\pi t_k}{\tau}}} = \prod_{k=0}^{K-1} \left(1 - e^{-\frac{j2\pi(t_k-t)}{\tau}} \right)
\]

has zeros at \(t = t_k\), \(k = 0, \ldots, K-1\), thus \(a(t) \cdot x(t) = 0 \)

\(A(z) \) is called an annihilating filter, since it “kills” \(x(t) \)

ECC: error locator polynomial
Theorem 1: Consider a periodic stream of K Diracs, of period τ, weights $\{c_k\}$ and locations $\{t_k\}$. Take a sampling kernel

$$h_\beta(t) = \beta \text{sinc}(\beta t)$$

where

$$\text{sinc} = \text{I}[-\pi, \pi]$$

$$\beta = \frac{2K + \frac{1}{2}}{\tau} > \rho$$

Pick $N = 2K + 1$ and $T = \tau/N$. Then

$$y_n = \langle h_\beta(t - nT), x(t) \rangle, \ n = 0, ..., N - 1$$

is a sufficient characterization of $x(t)$.
Proof

1. y_n is a sufficient characterization of $X[m]$, $m = -K \ldots K$

Either use Poisson $\sum A[m]z^{-m}$, or graphically:

2. Finding $A[m]$ s.t. $A[m]^*X[m] = 0$ $A[0] = 1$, solve for $m = 1 \ldots K$. This leads to a Toeplitz system, e.g. $K = 3$

$$
\begin{bmatrix}
X[0] & X[-1] & X[-2] \\
X[1] & X[0] & X[-1] \\
\end{bmatrix}
\begin{bmatrix}
A[1] \\
A[3]
\end{bmatrix}
= -
\begin{bmatrix}
X[1] \\
X[2] \\
X[3]
\end{bmatrix}
$$

Classic Yule-Walker system

Unique solution for distinct Dirac locations
3. Factorisation of $A(z)$: $A(z) = \prod_{k=0}^{K-1} (1 - u_k z^{-1})$

where $u_k = e^{-j2\pi \frac{t_k}{\tau}}$, thus $\{t_k\}_{k=0}^{K-1}$ is found

4. Finding the weights c_k.

Given $\{t_k\}$, K values of $X[k]$ are given,

for ex. for $K = 3$

$$
\begin{bmatrix}
X[0] \\
X[1] \\
X[2]
\end{bmatrix} = \frac{1}{\tau}
\begin{bmatrix}
1 & 1 & 1 \\
u_0 & u_1 & u_2 \\
2u_0^2 & 2u_1^2 & 2u_2^2
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2
\end{bmatrix}
$$

which is a Vandermonde system, having always a solution given distinct t_k's.
Interpretation

The projection of $x(t)$ onto the lowpass space $BL\left[-\frac{K2\pi}{\tau}, \frac{K2\pi}{\tau}\right]$ is one-to-one for a periodic stream of K Diracs.

Corollary 1: Given $A[m], m = 0...K$ and $X[m], m = -K...K$ one can recover the entire spectrum as

$$X[m] = -\sum_{k=1}^{K} A[k]X[m-k], m = K+1...$$

Proof: left to the reader

Notes:
1. annihilating filter known in sinusoidal retrieval from noise
2. same filter used in error correction coding, and called error locator polyn
3. recursive spectrum extrapolation known as Berlekamp-Massey algo. in ECC 2,3 over finite fields...
3.B Non-uniform splines

A signal \(x(t) \) is a periodic non-uniform spline of degree \(R \) with \(K \) knots at \(\{ t_k \}_{k=0}^{K-1} \) iff its \((R + 1)^{th} \) derivative is periodic of the form

\[
x^{(R+1)}(t) = \sum_{m \in \mathbb{Z}} c_m \delta(t - t_m)
\]

where \(t_{m+k} = t_m + \tau \)

Clearly, the Fourier series satisfy

\[
X^{(R+1)}[m] = \left(\frac{j2\pi m}{\tau} \right)^{R+1} X[m] \quad (\ast)
\]

Thus
Theorem 2: Consider a periodic non-uniform spline of max degree R and period τ. Take $h_\beta(t)$ as sampling kernel, with

$$\beta = \frac{2K + 1}{\tau} \quad \text{and} \quad T = \frac{\tau}{N} \quad N = 2K + 1$$

Then

$$y_n = \langle h_\beta(t - nT), x(t) \rangle \quad n = 0 \ldots N - 1$$

uniquely defines $x(t)$.

Proof: similar to Thm 1 to get $X[m]$. Then $X^{(R+1)}[m]$ follows from (*), to which we apply Thm 1. $X[0]$ is added at the end.
3.C Derivatives of Diracs

\[\delta^{(r)}(t) : \int f(t)\delta^{(r)}(t - t_0)dt = (-1)^{r}f^{(r)}(t_0) \]

where \(f \) is \(r \)-times differentiable

Then a periodic stream of differentiated Diracs is

\[x(t) = \sum_{m \in \mathbb{Z}} \sum_{r=0}^{R_{m-1}} c_{mr} \delta^{(r)}(t - t_m) \]

There are: \(K \) locations, \(\tilde{K} = \sum_{k=0}^{K-1} R_k \) weights.

Thus: \(\rho = \frac{K + \tilde{K}}{\tau} \)

It can be verified that:

\[X[m] = \frac{1}{\tau} \sum_{k=0}^{K-1} \sum_{r=0}^{R_{m-1}} c_{kr} \left(\frac{j2\pi m}{\tau} \right)^r e^{-j2\pi mt_k} \]
The annihilating filter now requires multiples zeros, since

\((1-u_kz^{-1})^R\) annihilates \(m^{R-1}u_m^k\). Thus \(A(z)\) becomes

\[
A(z) = \prod_{k=0}^{K-1} (1-u_kz^{-1})^{R_k}
\]

Then: \(A[m]^*X[m] = 0\), therefore, one can show:
Theorem 3: Consider a periodic stream of differentiated Diracs as above. Take as sampling kernel \(h_\beta(t) = \beta \text{sinc}(\beta t) \) with \(\beta = \rho + 1/\tau \) and sample \(h_\beta Sx \) at \(N \) points \(t = n\tau/N \) where \(n = 0 \ldots N-1 \) and \(N = K+K+1 \). Then

\[
y_n = \langle h_\beta(t - n\frac{\tau}{N}), x(t) \rangle \quad n = 0 \ldots N-1
\]

is a sufficient characterization of \(x(t) \).

Proof: Similarly to Thm 1, we first get \(X[m] \) from \(y_n \). Then we solve for the location \(\{t_k\} \ A[m]X[m] = 0 \) and finally for the coefficients \(\{c_{kr}\} \). The latter calls for a generalized Vandermonde system which is non-singular for \(t_i \neq t_j \quad i \neq j \).
3.D Piecewise Polynomials

A periodic piecewise polynomial $x(t)$ with K pieces of degree $\max R$ has an $(R+1)^{th}$ derivative which is a stream of differentiated Diracs, or

$$x(t) = \sum_{m \in \mathbb{Z}} \sum_{r=0}^{R_m-1} c_{mr} \delta^{(r)}(t-t_m)$$

There are: K locations, $\tilde{K} = (R+1)K$ weights

$$\rho = \frac{(R+2)K}{\tau}$$
Then:

Theorem 4: A signal defined by its derivatives as in (***) can be recovered after convolution by $h_\beta(t)$, where $\beta = \rho + 1/\tau$ and sampling at $t = n\tau/N$ with $N = (R + 2)K + 1$, that is

$$y_n = \langle h_\beta(t - n\frac{\tau}{N}), x(t) \rangle \quad n = 0 \ldots N - 1$$

uniquely specifies $x(t)$

Proof: left to the reader, along Theorem 1, 2 and 3.
Sampling FRI-33

\[x(t) \]

\[h(t) \]

\[y(t), y_n \]

Time

Freq
4 Finite Length Signals

A finite length signal with finite \(\rho \) clearly has a finite # of degrees of freedom.

The question of interest is:

given a sampling kernel with an infinite support (like the sinc or the gaussian), is there a finite set of samples that uniquely specifies the signal?
4.1 Gaussian Kernel

Consider the same signal as in (4.1), now using a gaussian kernel

\[h(t) = e^{-\frac{t^2}{2\sigma^2}} \]

Then, the sample values are

\[y_n = \langle x(t), e^{-\left(\frac{t}{T} - n\right)^2 / (2\sigma^2)} \rangle \]

\[y_n = \sum_{k=0}^{K-1} c_k e^{-\left(\frac{t_k}{T} - n\right)^2 / (2\sigma^2)} \]
Expanding (4.1)

\[y_n = \sum_k c_k e^{T^2 \sigma^2} \cdot e^{T^2 \sigma^2} \cdot e^{2\sigma^2} \]

(4.2)

Introduce

\[Y_n = e^{T^2 \sigma^2} \cdot y_n \]

Thus

\[Y_n = \sum_k \frac{-t_k^2}{a_k} \cdot \left(\frac{t_k}{e^{T^2 \sigma^2}} \right)^n \cdot \left(\frac{t_k}{a_k} u_k^n \right) \]

\[Y_n = \sum_{k=0}^{K-1} a_k u_k^n \]

(4.4)

that is ... a linear combination of exponentials!
Therefore, use the usual method of the good old annihilating filter

\[\text{A} \star \text{Y} = 0 \]

and factor it such as to find \(\{u_k\}_k = 0...K - 1 \)

From \(u_k \):

\[t_k = 2\sigma^2 T \ln u_k \]

From \(u_k \) and \(t_k \) and \(K \) values of \(Y_n \), we can solve for \(c_k \) in (4.2). Thus
Theorem 5: Given a finite stream of \(K \) Diracs and a gaussian kernel \(h(t) = e^{-t^2/(2\sigma^2)} \), then \(N \) samples

\[
y_n = \langle x(t), h\left(\frac{t}{T} - n\right) \rangle
\]

where \(N \geq 2K \), are sufficient to reconstruct the signal.

Note: Similar remarks as for Theorem 3...

But: Here, unlike in the sinc case, we have an "almost local" reconstruction because of the exponential decay of \(h(t) \) !
4.2 Sinc kernel (Thierry’s tour de force)

Consider a finite sequence of spikes

\[
x(t) = \sum_{k=0}^{K-1} C_k \delta(t - t_k)
\]

and a kernel \(\text{sinc}(t/T) \)

The samples \(y_n = \langle x(t), \text{sinc}\left(\frac{t}{T} - n\right) \rangle \) are

\[
y_n = \sum_{k=0}^{K-1} C_k \text{sinc}\left(\frac{t_k}{T} - n\right) = (-1)^n \sum_{k=0}^{K-1} C_k \frac{\sin(\pi t_k / T)}{\pi \left(\frac{t_k}{T} - n\right)}
\]
Introduce the following interpolators:

\[P(u) = \prod_{k=0}^{K-1} \left(\frac{t_k}{T} - u \right) = \sum_{k=0}^{K} p_k u^k, \text{ deg. } K \]

\[P_l(u) = \prod_{k \neq l} \left(\frac{t_k}{T} - u \right), \text{ deg. } K - 1 \]

Then, consider the following

\[Y_n = (-1)^n P(n) y(n) = \frac{1}{\pi} \sum_{k=0}^{K-1} C_k \sin((\pi t_k)/T) P_k(n) \quad (4.7) \]

\[Y = A \cdot C \]

Now (key insight!) \(Y_n \) is of degree \(K - 1 \) Thus

\[\Delta^K Y_n = 0 \quad n = K \ldots N - 1 \quad (4.8) \]

\[V \cdot p = 0 \quad N - K \geq K \]

Note: \(\sim \Delta^K \) similar to annihilating filter
So, as long as $N - K \geq K$, one can use (4.4) to solve for P_k from y_n. This leads to $\{t_0, t_1, ..., t_{K-1}\}$.

Using this in (4.6) allows to solve for $\{c_i\}$. Thus:

Theorem 6: Given a finite stream of K Diracs and a $\text{sinc}(t/T)$ kernel, N samples $y_n = \langle x(t), \text{sinc}\left(\frac{t}{T} - n\right) \rangle_{n=0...N-1}$ where $N \geq 2K$, are sufficient to reconstruct the signal.

Note: the result does not depend on T! Of course, it shows up in the conditionning of linear system!!
The steps to reconstruct the signal are

1. Solve a linear system $K \times K$

 $$\{y_i\} \rightarrow \{p_i\}, \ i = 0\ldots K-1 \ (p_k = 1)$$

2. Factor

 $$P(u) \rightarrow \{t_i\}, \ i = 0\ldots K-1$$

3. Solve linear system $\rightarrow \{c_i\}$

This method can be extended to piecewise polynomials, similarly to Theorem 4.

Also, there is an obvious equivalent for discrete-time signals from $l_2(\mathbb{Z})$ and discrete-time sinc kernels.
Sinc Kernel, finite length signals

Conditioning on location

Conditioning on weights
5. Applications

We show 2 direct applications of the results shown above.

5.1 Piecewise Bandlimited Signals

Consider a signal that is the sum

\[x = x_{BL} + x_{PP} \]

where \(x_{BL} \) is bandlimited and \(x_{PP} \) is piecewise polynomial.

Assume \(x_{BL} \) is specified by its frequency component \(X_{BL}[k], k \in [-M, M] \) while \(x_{PP} \) has \(2K \) degrees of freedom.
Then, consider the spectrum of $X[k]$, $k \in [-M-2K, M+2K]$.

First, using $X[k]$, $k \in [M+1, M+2K]$ and the technique of Proposition 1 or Theorem 1, we can recover x_{PP}. Subtracting X_{PP} from X, we can then recover X_{BL}.
Piecewise Bandlimited Signal
Thus:

Proposition 3: Given a piecewise BL signal of length N, with $2M + 2K$ degrees of freedom. Pick Q a divisor of N and $\varphi[n] = \text{IDTFS}(I[-2K-M,M+2K])$.

Then

$$y[l] = \langle x[n], \varphi[n-lQ]\rangle_{\text{circ}}$$

uniquely specify $x[n]$ if

$$\frac{N}{2Q} > M + 2K$$

The proof follows from earlier results with adjustments ●
5.2 Filtered Piecewise Polynomials

Consider a stream of \(K \) Diracs convolved with a known filter \(g(t) \)

Thus: \(x(t) = g(t) \ast d(t) \)

where \(g \) is known and \(d(t) = \sum_i \alpha_i \delta(t - t_i) \)

Clearly, if \(g[n] \leftrightarrow G[k] \) is invertible over \(2K \) frequency values, then we can use Proposition 1.
Example:
In particular:

Proposition 4: Assume $x[n]$ with K Diracs and a filter $G[k] \neq 0$, $k \in [-K, K]$. The signal we observe is $x[n] * g[n]$.

Using $\varphi[n] = \text{IDTFS}(I_{[-K, K]})$ and M such that $\frac{N}{2M} > K$, M a divisor of N.

Then

$$y[l] = \langle x[n], \varphi[n - lM] \rangle$$

is a sufficient representation of $x[n]$.

A more difficult case appears when $g[n]$ is unknown but of finite ρ ...
6 Multidimensional Case

2D Poisson: K Diracs on \mathbb{R}^2/T

Various approaches

• non separability is the key!
• $X[m_1, m_2], |m_i| \leq K$ is sufficient $\Rightarrow O(K^2)$ samples
• $X[m_1, m_1], |m_1| \leq K$ is sufficient $\Rightarrow O(K)$ samples

--> 2D root finding (...) or spectral extrapolation

Extension:

• lines
• simples objects

Goal: $\#\text{samples} \sim \#\text{deg. of freedom of object}$
Example of a 2D gaussian kernel:
2D methods based on projections

Radon Transform

\[f(x, y) \Leftrightarrow F(\theta, t) \]

What about “finite complexity” objects?
⇒ Projections are finite rate of innovation!
Result: Set of K Diracs can be perfectly reconstructed from $K+1$ bandlimited projections with $2K$ samples

See [Maravic] ICASSP-2002
Many com. systems use wideband signalling

CDMA: chip rate $>>$ symbol rate

UWB: pulse position modulation

In both cases

rate of innovation $<<$ bandwidth

But: Noise!

Solution: oversample

subspace methods, SVD
7.1 Solving for sinusoids in noise

Idea: Solve for “longer” filter:

\[
\begin{bmatrix}
 x(0) & x(-1) & \cdots & x(-M) \\
 x(1) & x(0) & & \\
 x(2) & & \cdots & \\
 \vdots & & \ddots & \\
 x(M) & \cdots & x(0)
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
\vdots \\
a_{M-1}
\end{bmatrix}
= \begin{bmatrix} x(1) \\
\end{bmatrix}
\]

using 2M+1 samples > 2K oversample

Now: The noiseless Toeplitz matrix has rank K (# of sinusoids) with

\[
A = \begin{bmatrix} a_0 & a_1 & \cdots & a_{K-1} \end{bmatrix}
\]

where \(a_i = \begin{bmatrix} e^{-j\omega_i M} & \cdots & 1 & \cdots & e^{j\omega_i M} \end{bmatrix}^T \)
we can write the Toeplitz matrix as

\[
T = A \cdot \begin{bmatrix}
\alpha_0 \\
\alpha_1 \\
\vdots \\
\alpha_{K-1}
\end{bmatrix} \cdot A^M + N
\]

where \(N \) is the noise Toeplitz matrix

Thus: If the sinusoids dominate the noise (\(M \) large enough), a \(K \)-dimensional subspace identifies the sinusoids

Then:

1. Compute SVD of \(T \)
2. Approximate by \(K \) largest singular value: \(T \rightarrow \hat{T} \)
3. Solve \(\hat{T}a = x \) on subspace
4. Find roots closest to U.C.

\[\Rightarrow \text{best approximation of sinusoids}\]
Note:

- Many alternative available
- Well studied problem
- Time versus correlation domain

Example: - MUSIC
 - ESPRIT
 - NL
7.2 Multiuser Communication

Direct Sequence Code Division Mult. Access (DS-CDMA)

Model:
- User i has a signature sequence S_i
- each bit is spread into this signature

Ex:

Thus:

Clearly: rate of innovation is symbol rate

Usually: sampling done at chip rate or faster

Now: chip rate $10^2 - 10^3 >$ symbol rate! (e.g. $L=511$)
But: - multiaccess scheme
 - multipath environment

Multiaccess: signature are orthogonal
Multipath: small number of dominant pulses

User i: \(p_i(t) = \sum_{k=1}^{p} \beta_i \delta(t - t_k^{(l)}) \)

Two phases
1. Channel estimation:
 Using training sequences, \(\{p_i(l)\}_{i=1..K} \) is estimated

2. Detection:
 Based on the channel estimate, various detectors (e.g. MMSE) can be applied

Question: For a digital receiver,
Should one run:
 - channel estimation
 - detection
at symbol rate or chip rate?
Sampling FRI - 61

Detect.1

Detect.K

Chann. Est.

K Users

Signatures
$S_i \perp S_j$

Channels

MAC

Chann. Est.

Detection

analog
Degrees of freedom

Channels:
- K users
- P multiple paths

But: users can use training sequences of length K

Result:
Solving K linear systems of $O(M)$ with $M \geq 2P$, is sufficient for channel estimation
7.3 Ultrawideband communications

Very low signal to noise ratio (-15 dB)

Used for communications in unlicensed spectrum and for ranging applications

Bandwidth: several GHz
Very difficult to design digital receivers

Results:
Finding one dominant eigenvalue can be sufficient!
8 Conclusions

We have seen:

- Many signals that look “unsampleable” actually can be sampled at their rate of innovation!
- Methods: give me an exponential and I will annihilate it!
- Structured linear systems with fast algorithms $O(K^2)$
- Can be generalized (rotational, 2D)

But: There are many more signals with finite rate of innovation

Conjecture: They can be sampled at or above their rate of innovation!
Outlook

• Many other parametric classes are of interest (piecewise trigonom.)

• Often, there is a “low degree of freedom” explanation

• This is not necessarily a subspace (e.g. manifold)

• “Super-resolution” signal processing for appropriate models (channels, images, etc...) has great potential

Occam’s Razor for sampling!
References

M. Vetterli, P. Marziliano, T. Blu, “Sampling Signals with Finite Rate of Innovation”, IEEE Tr. on SP, June 2002

I. Maravic, M. Vetterli, “Sampling Results for Classes of Non-Bandlimited 2-D Signals” Trans. on Signal Processing, accepted for publication.
